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Introduction
Childhood cancers are diverse, originating from different tissue types, cell lineages and differentiation 
states, and, increasingly, genetic mutations. Childhood cancer is the most common disease-related cause 
of  death in children under the age of  15 (1). Despite recent advances in the understanding of  the molec-
ular pathogenesis of  childhood cancers, their fundamental causes and how this knowledge can be used to 
improve clinical outcomes remain poorly understood. Environmental exposures, such as infections, have 
been proposed to contribute to childhood cancer development, but in most cases, these associations appear 
relatively weak or lacking in biologic plausibility (2). Major efforts over the years have focused on defining 
genetic mutations in human tumors to better understand their origin. Targeting therapy to tumor-specific 
mutations holds the promise of  improved precision and efficacy in eradicating cancer cells, while sparing 
patients the acute and long-term sequelae of  cytotoxic chemo- and radiotherapy. However, genome-wide 
studies are revealing striking differences in the prevalence of  somatic mutations among tumor types; they 
are numerous among adult cancers, such as melanomas, and relatively infrequent among cancers of  infants 
and young children, such as rhabdoid tumors (3, 4).

Despite the relative paucity of recurrent gene mutations, recent genomic analyses have begun to identify the 
essential functions of genetic rearrangements that affect noncoding elements in some pediatric tumors (5–8). 
In addition, recurrent chromosomal and complex genomic rearrangements, including chromothripsis, double 
minute chromosomes, and others, are observed in many childhood tumors (9, 10). Indeed, how genomic rear-
rangements observed in some pediatric tumors can occur at such a young age in otherwise genetically stable cells 
remains a conundrum. In contrast with adult cancers, most childhood tumors lack apparent mutations of TP53 
and other canonical tumor-suppressor genes regulating genome stability (11). Whereas defects in DNA damage 
repair have been suggested to explain the increased incidence of some cancers in relatively young people, the 
causes of complex genomic rearrangements in most cancers in young children remain largely undefined.

Here, we review the evidence that endogenous nucleases related to DNA transposases contribute to the 
formation of  genomic rearrangements in childhood tumors by acting as oncogenic mutators. In addition to 
discussing their functions in childhood tumorigenesis, we discuss actionable therapeutic strategies arising 
from synthetic lethality resulting from their nuclease activities. Finally, we propose future studies that take 
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advantage of  forward genetic screens, developmentally accurate animal models, and improved techniques 
for genome analysis to define other oncogenic mutators that may contribute to the development of  child-
hood cancers. We omit the discussion of  germline activity of  transposable elements with respect to cancer 
predisposition (12–14).

Active human transposases
Transposons are mobile genetic elements that are found in nearly all living organisms and comprise about 
half  of  the human genome (12, 15, 16). Generally, these elements are classified as RNA-based trans-
posons related to retroviruses (17) and “cut-and-paste” or “copy-and-paste” DNA transposons (12, 18). 
The latter are substrates for a large family of  DNA-dependent nucleases, termed “DNA transposases” or 
“DNA recombinases.” Many DNA transposases use an RNase H-like domain that catalyzes hydrolysis to 
accomplish DNA excision, strand exchange, and site-specific integration (19–21). Although the majority 
of  genes that encode transposase enzymes tend to become catalytically inactive and most transposon 
substrates tend to become immobile in the course of  evolution, some can maintain their activities (18).

The Drosophila telomere retroelements HeT-A, TART, and TAHRE were the first active RNA trans-
posable elements found to have cellular physiologic functions (22). Human telomerase and retrotransposon 
reverse transcriptase also exhibit a number of  structural and mechanistic similarities and likely share a 
common origin (22–24). Similar to retrotransposons, human telomerase uses RNA templates to synthesize 
DNA at telomeres to maintain chromosomal integrity. This prevents the activation of  aberrant DNA dam-
age repair and resultant mitotic failure and genomic instability. Indeed, many tumors, including childhood 
tumors, rely on telomerase overexpression to maintain telomeres, frequently caused by activating somatic 
promoter mutations (25). It is unknown whether, in addition to maintaining telomere repeats, oncogenic 
telomerase activation also acts at other genetic loci. Nonetheless, telomerase is a domesticated retrotrans-
poson that can be aberrantly activated in human cancer.

Other retrotransposons, most notably some long interspersed element-1 (LINE-1) transposons, remain 
active in human cells, including neural progenitor cells (26), and several human cancers (27–29). This 
activity can promote mobilization of  LINE-1 transposons themselves as well as Alu and short interspersed 
element transposons. Indeed, the first discovered example of  disease-associated retrotransposition was a de 
novo LINE-1 insertion in the F8 clotting factor gene, leading to familial hemophilia (30). In cancer, most 
of  the observed transposition events appear genetically neutral, but at least some are clonal and can cause 
inactivating mutations of  tumor suppressor genes (31, 32).

In addition to retrotransposons, the human genome also contains over 20 genes with recognizable 
similarity to DNA transposases, some of  which remain active (12) (Table 1). For example, the human 
Transib-like DNA transposase RAG1/2 catalyzes somatic recombination of  the Ig and T cell receptor 
genes in lymphocytes (33, 34). RAG1 endonuclease and its cofactor RAG2 are targeted to the variable, 
diversity, and joining [V(D)J] sites by specific binding of  the recombination signal sequences (RSSs) con-
sisting of  a highly conserved heptamer (CACAGTG) and a less conserved nonamer (ACAAAAACC) 
motif, separated by 12- or 23-bp sequence–independent spacers (35) (Figure 1). RAG1/2 cleaves DNA 
at the boundary between the RSSs and the flanking coding sequence, thereby generating 2 blunt and 2 
hairpin ends (35). Processing of  these ends can involve the addition of  nontemplated sequences at the 
breakpoint by terminal deoxynucleotidyl transferase in a process that results in somatic diversification of  
the V(D)J loci (36), which allows for the development of  lymphocytes capable of  recognizing a diverse 
range of  antigens. Although DNA transposition by RAG1/2 can be observed with engineered reactions 
in vitro, this activity is almost completely impaired in cells (33). Thus, RAG1/2 is a domesticated DNA 
transposase that has evolved to carry out excision of  endogenous transposon-like substrates in a coordi-
nated manner to contribute to immune receptor diversification.

Another example for a DNA transposase that has retained some of  its original catalytic activity is 
SETMAR/METNASE. The Mariner-derived transposase SETMAR functions in single-stranded DNA 
resection during DNA repair and replication in human cells and has been found to catalyze DNA transpo-
sition in vitro but not in cells (37, 38). Thus, the human SETMAR protein preserves most, but not all, of  
the activities of  the ancestral Hsmar1 transposase and has acquired new functions contributing to human 
cellular DNA repair (38). SETMAR appears to promote chromosome decatenation (38), DNA replication, 
and chromosomal stability. Because SETMAR is one of  many cellular endonucleases that can resolve dam-
aged DNA ends, such as ARTEMIS, which resolves RAG1/2-induced hairpins (39), its specific functions 
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in DNA damage repair still need further definition. In addition to RAG1/2 and SETMAR, human THAP9 
was also recently found to support “cut-and-paste” DNA transposition in human cells (40). THAP9 is relat-
ed to the Drosophila P-element transposase and can mobilize Drosophila P-elements in both fly and human 
cells. The physiologic and potential pathophysiologic functions of  THAP9 are currently unknown.

In addition, the human genome contains five paralogous genes, PGBD1–5, derived from piggy-
Bac-related DNA transposases (41, 42). PGBD1 and PGBD2 appear to have invaded a common mam-
malian ancestor, whereas PGBD3 and PGBD4 are restricted to primates. PGBD1–4 all exist as single 
coding exons, fused in frame with endogenous host genes (15). One such transposase-derived fusion 
gene is the Cockayne syndrome B gene–PGBD3 (CSB-PGBD3) (42). CSB-PGBD3 is capable of  binding 
human endogenous piggyBac-like transposon sequences but does not appear to have catalytic activity, 
though biochemical and genetic evidence indicates that it, similar to SETMAR, may participate in the 
DNA damage response (43, 44).

Figure 1. Schematic delineating how endogenous mutational processes, including activities of endogenous DNA transposases, can contribute to the 
transformation of healthy progenitor/stem cells into tumor cells. Dysregulation of progenitor cells by abnormal developmental and epigenetic factors as 
well as other unknown processes (e.g., inherited alleles) leads to the activation of endogenous mutational processes, including oncogenic DNA trans-
posase mutators, leading to mutations that initiate and/or cooperate to induce tumors. Illustrated by Mao Miyamoto.
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PGBD5 appears to be distinct from other human piggyBac-derived genes. First, PGBD5 was domes-
ticated much earlier in vertebrate evolution, approximately 500 million years ago (42, 45). Furthermore, 
PGBD5 expression appears largely restricted to the early embryo, certain areas of  the embryonic and adult 
brain, as well as embryonic solid tumors (45–47). Remarkably, PGBD5 encodes an enzymatically active 

Figure 2. Possible mechanisms by which PGBD5 and RAG1/2 induce genomic rearrangements. PGBD5 and RAG1/2 are DNA transposases that can promote 
oncogenic genomic rearrangements. RAG1/2 binds to RSSs, and PGBD5 binds to PSSs and through cleavage induces a variety of possible changes, such as 
small insertion or deletion polymorphisms at the site of a double-strand break (DSB) repair, large insertions and deletions, inversions, and translocations. 
Illustrated by Mao Miyamoto.
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DNA transposase, and 3 aspartic acid residues in its RNase H-like transposase domain are required for 
enzymatic nuclease activity similar to that of  the looper moth piggyBac DNA transposase (46). PGBD5 
catalyzes DNA transposition of  synthetic piggyBac substrates in human cells, with a preference for TTAA 
sites genome wide (46). It is currently unknown whether PGBD5 can perform DNA transposition of  
endogenous human genomic DNA elements and whether it has physiologic functions related to its enzy-
matic nuclease activity in vertebrate neurons.

RAG1/2 induces oncogenic chromosomal translocations and deletions of 
tumor suppressor genes in lymphoblastic leukemias and lymphomas
In 1946, Barbara McClintock first suggested that transposons could cause chromosomal breakage in plants 
(48–51), which was subsequently supported by findings that transposons can promote chromosomal aber-
rations, such as translocations, inversions, deletions, duplications, and the formation of  chromosomal frag-
ments (52). The first evidence of  transposase-induced chromosomal aberrations in humans was found in 
acute lymphoblastic leukemias (ALLs). ALL is caused by recurrent chromosomal translocations and dele-
tions, with some occurring during fetal development (53). Recent genomic profiling studies have found copy 
number aberrations (CNAs) to be common in ALL (54, 55). Because functioning heptamer or nonamer 
sequence motifs outside the immunoglobulin receptor loci have been associated with alternative mechanisms 
of  RAG1/2 recruitment and subsequent genomic rearrangements (56, 57), it has been proposed that aber-
rant RAG1/2 activity might contribute to leukemogenesis (Figure 2). Indeed, some CNAs in ALL cells have 
apparent V(D)J recombination sequence motifs close to the CNA breakpoints (58). This notion was further 
supported by the identification of  RAG1/2 recognition sequences near the breakpoint junctions of  CNAs 
and chromosomal translocations in ETV6-RUNX1 leukemias (59). Interestingly, RAG1/2 continues to be 
highly expressed by ETV6-RUNX1 leukemia cells, resulting in diverse and ongoing oligoclonal V(D)J rear-
rangements (60). It remains to be formally determined whether RAG1/2 expression is sufficient to induce 
CNAs and leukemic mutations. Nonetheless, it is highly probable that RAG1 and RAG2 are transposase-de-
rived genes with oncogenic mutator functions in lymphoid cancers. In addition, RAG1/2 is required for 
leukemia development in genetically engineered mouse models, at least in part in response to inflammatory 
signaling (61). Intriguingly, this suggests that immune signaling and physiologic states may contribute to the 
dysregulation of  RAG1/2 activity, contributing to the induction of  leukemogenic mutations.

PGBD5 promotes site-specific deletions, inversions, and translocations in 
rhabdoid tumors
Similar to RAG1/2, which is exclusively expressed in lymphoid cells and lymphoid tumors, PGBD5 also 
exhibits developmentally restricted expression in neuronal tissues and in the majority of  childhood solid 
tumors, such as medulloblastoma, neuroblastoma, ependymoma, Ewing sarcoma, and rhabdoid tumors 
(45–47). Remarkably, PGBD5 expression is sufficient to promote oncogenic genomic rearrangements and 
induce anchorage-independent cell growth in vitro and tumor formation in vivo (62). This activity requires 
the putative catalytic residues in the PGBD5 transposase domain and depends on cellular nonhomologous 
end joining (NHEJ) DNA repair. Based on the use of  alignment-free algorithms to detect genome rear-
rangements (63, 64), PGBD5-induced cell transformation was found to be associated with the occurrence 
of  distinct intrachromosomal deletions, inversions, and translocations, significantly enriched for non-
coding regulatory elements important for embryonal tissue development (62). Some of  these rearrange-
ments involved tumor suppressor genes that were required for the survival of  transformed cells (Figure 2).  

Table 1. Known human transposase-derived genes and their observed activities

Gene Transposition activity in vitro Transposition activity in cells Oncogenic mutator Tumor activity
RAG1/2 Yes No Yes Lymphoid cancers  

(e.g., lymphoblastic leukemias and lymphomas)
PGBD5 Yes Yes Yes Most childhood and distinct solid tumors
THAP9 Yes Yes Unknown Unknown
SETMAR Yes No Unknown Unknown
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Importantly, some of  the observed rearrangement breakpoints exhibited significant sequence homolo-
gy and included distinct sequences that were termed “PGBD5-specific signal sequences” (PSSs), with 
similarity to the human sequence substrates of  PGBD5, as identified using a forward genetic screen (62, 
65). However, the genomic rearrangements did not show signs of  reinsertion (transposition) of  excised 
fragments, suggesting that PGBD5 induces mutations through its nuclease activity rather than performing 
DNA transposition of  genomic DNA in cancer cells. Consistent with these findings, genomic loci physi-
cally associated with the PGBD5 protein complex in rhabdoid tumor cells were also significantly enriched 
for PSS motifs (62). Indeed, primary human rhabdoid tumors expressing PGBD5 also exhibited recurrent 
genomic rearrangements with PSS sequences at the breakpoints, involving known tumor suppressor genes 
(62). These data provided compelling support that PGBD5 promotes sequence-specific oncogenic muta-
tions and thus acts as an oncogenic mutator in rhabdoid tumors. Presumably, similar mechanisms operate 
in other PGBD5-expressing human cancers, which is the subject of  ongoing studies.

Active DNA transposases confer synthetic lethal dependencies as targets 
for improved therapy
Could tumors with active DNA transposases depend on active DNA damage repair and signaling? Individ-
uals with constitutional defects in DNA repair have pleiotropic phenotypes, including immunodeficiency, 
neurodegeneration, developmental abnormalities, and cancer predisposition. For example, ataxia telangi-
ectasia (AT) is an autosomal recessive disorder linked to loss of  ATM and characterized by immunodefi-
ciency, progressive cerebellar ataxia, oculocutaneous telangiectasias, clinical radiosensitivity, chromosome 
instability, and increased risk of  developing lymphoid malignancies (66). Immunodeficiency resulting from 
defective DNA repair is understood to be a result of  inefficient and genotoxic RAG1/2-mediated DNA 
recombination activity in developing lymphocytes. In addition, somatic retrotransposition might explain 
some of  the neurologic defects occurring in AT patients with loss of  ATM (67).

This model is consistent with the notion that DNA transposases rely on cellular DNA repair to mediate 
DNA rearrangements, including ligation of  DNA target sites (15). In humans, this repair activity is prin-
cipally carried out by NHEJ DNA repair machinery, involving the heterodimeric Ku70/Ku80 (XRCC6/
XRCC5) complex and signaling factors such as the ATM and Rad3-related kinases (68–70). Based on the 
above considerations, we recently tested the hypothesis that cells expressing active PGBD5 would depend 
on ongoing DNA damage repair and signaling. We found that expression of  PGBD5 but not its catalytical-
ly inactive mutant induced DNA damage and apoptosis in cells deficient in Ku80, Atm, or Atr (71). Further-
more, we found that PGBD5 expression in pediatric tumor cells was required to render them susceptible to 
pharmacologic inhibition of  DNA damage signaling (71). In particular, PGBD5 expression conferred sus-
ceptibility of  rhabdoid tumor, medulloblastoma, neuroblastoma, and Ewing sarcoma cells to the ATR-se-
lective kinase inhibitor AZD6738 (71). AZD6738 treatment of  xenograft mouse models of  some but not 
all PGBD5-expressing childhood solid tumors led to significant reductions and occasional regressions of  
tumor growth in vivo (71). These experiments provided a proof-of-principle demonstration that expression 
of  an active oncogenic mutator DNA transposase is sufficient to confer susceptibility to pharmacologic 
inhibitors of  DNA damage repair signaling. It is conceivable that additional synthetic, functional relation-
ships between active DNA transposases and their cellular cofactors and signaling dependencies might be 
similarly developed for improved cancer therapy (72).

What mutational processes and oncogenic mutators are responsible for the 
increased incidence of distinct cancers in children and young adults?
With the development and application of  high-throughput DNA sequencing, we are beginning to be able 
to define comprehensive landscapes of  mutational processes in human cancer cells. It is now evident that 
human cancers are characterized by more than 50 mutational patterns involving nucleotide substitutions 
and at least 17 classes of  DNA deletions and rearrangements (6, 73). Some of  the observed mutational pro-
cesses appear to be due to impaired DNA damage repair and DNA replication, and many have unknown 
causes. For example, so-called signature 18 (SBS18) is exclusively observed in neuroblastomas, presumably 
due to as-yet-undefined oxidative processes in neuroblastoma cells. Similarly, deletion signatures ID6 and 
ID8 exhibit features of  NHEJ recombination, with as-yet-unknown nucleases. Six additional insertion and 
deletion patterns of  mutation have been observed, whose mechanisms are also undefined. In addition, 
current evidence indicates that RAG1/2 mediates chromosomal translocations and deletions in lymphoid 
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cancers, and PGBD5 promotes deletions and genomic rearrangements in rhabdoid and presumably other 
PGBD5-expressing solid tumors (Figure 1). The human genome encodes numerous DNA transposase–
related genes, including some such as THAP9 that remain active and many that appear to be expressed in 
human cancers. Thus, it is possible that additional nucleases, recombinases, or transposases may function 
as oncogenic mutators in specific human cancers.

Conclusions and perspectives
Despite recent studies demonstrating that transposase-derived genes can act as oncogenic mutators, the 
activities of  most human DNA transposase– related genes remain largely undefined. The identification of  
oncogenic mutators involved in the generation of  genomic rearrangements in childhood cancers is import-
ant because these processes and molecules that mediate them may represent effective therapeutic targets, as 
suggested for PGBD5 (71). We anticipate that future studies using forward genetic screens and oncogenic 
transformation assays will define the functions of  DNA nucleases and transposases expressed in human 
cancer (46, 47, 65). Furthermore, high-throughput long-read DNA sequencing and improved assem-
bly-based algorithms for its analysis could be used to comprehensively define oncogenic genomic rearrange-
ments and mutational processes (47). Additionally, developmentally accurate animal models should help 
define the functions of  transposase-related genes in initiating oncogenic mutations and/or contributing to 
tumor maintenance. Because small molecules that target specific DNA damage repair signaling pathways 
are being developed, a resultant more detailed and integrated understanding of  transposase-induced DNA 
damage could help identify promising new targets. Finally, considering the distinct expression patterns of  
endogenous DNA transposases in healthy human tissues, further study of  their physiologic functions may 
reveal as-yet-unknown somatic or germline developmental processes.
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